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Summary of This Work

• The first privacy preserving non-interactive 

solution of mean-shift clustering algorithm based 

on homomorphic encryption

• Outstanding performance: Fast and Accurate

– 99.99% accuracy on 262,144 data within only 82 min

– 400 times faster than the previous work (SAC 18)
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Data Clustering

• Grouping a set of given data into several 

subgroups

• Unsupervised machine learning task
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Privacy Preserving Clustering

• Clustering is used in fields dealing with private 

information

– Bioinformatics, finance, customer behavior analysis

• People do not want to delegate clustering of raw 

data to untrusted server
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Homomorphic Encryption

• Homomorphic encryption (HE) allows arithmetic 

operations on ciphertexts without any decryption process
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Homomorphic Encryption

• Homomorphic encryption (HE) allows arithmetic 

operations on ciphertexts without any decryption process

• Non-arithmetic operations (comparison, min, max) can 

be approximately computed

– But expensive
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Privacy Preserving Clustering

• People can delegate clustering of private data to 

untrusted server with homomorphic encryption
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Privacy Preserving Clustering

• People can delegate clustering of private data to 

untrusted server with homomorphic encryption

Two main issues:

1. Which clustering algorithm?

2. How to make it arithmetic?
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K-means vs. Mean-shift

K-means 

Clustering

Mean-shift

Clustering

Complexity

O(#clusters
⋅ #points
⋅ #iterations)

𝐎(#𝐩𝐨𝐢𝐧𝐭𝐬𝟐

⋅ #𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬)

Parameter
Number of 

Clusters
None

Shape of 

data

Should be 

convex
None

Comparison 

Operations

A number of 

comparison 

operations

None
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• K-means is faster

– But uses more pieces of 

information
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A number of 
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None
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• K-means is faster

– But uses more pieces of 

information

• Mean-shift clustering is 

more HE applicable

– Non-parametric

– No restriction on the 

shape of data

– Does not use comparison 

operations



• Clustering technique based on an 

estimated density map 

– Label each point by its closest local maximum 

(mode) of a Kernel Density Estimator (KDE)

Mean-shift Clustering
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Mean-shift Clustering

• Kernel function

– A function indicating a probability density map 

generated by a given datum
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Mean-shift Clustering

• Kernel function

– A function indicating a probability density map 

generated by a given datum

• KDE map

– Estimator of probability density function based on the 

given kernel function

• Modes

– The local maxima of the KDE map
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profile 𝑘 is a non-negative and decreasing function
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Mean-shift Clustering

• Mean-shift process

– Slightly moves each 𝒙 to a denser point

– Gradient descent method to seek modes
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Mean-shift Clustering

• Mean-shift process

– Slightly moves each 𝒙 to a denser point

– Gradient descent method to seek modes

• Mean-shift clustering

– Cluster each point by the mode it

goes by mean-shift processes
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Drawbacks of Mean-shift

1. Non-arithmetic kernel function

–Gaussian kernel function

• 𝐾𝐺 𝑥, 𝑦 = 𝑐𝑘𝐺 ⋅ 𝑒
−

𝑥−𝑦 2

𝜎2

• Exponential function

2. Computationally expensive

–O(#points2 ⋅ #iterations)
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IDEA1: HE Friendly Kernel

• New kernel function

𝑘 𝑥 = 1 − 𝑥 2Γ+1

1. Similar performance with usual kernels 

• Satisfies the necessary conditions of kernel functions

– Decreasing and non-negative on its domain

• Manage to group plaintexts of public datasets properly
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IDEA1: HE Friendly Kernel

• New kernel function

𝑘 𝑥 = 1 − 𝑥 2Γ+1

1. Similar performance with usual kernels 

• Satisfies the necessary conditions of kernel functions

– Decreasing and non-negative on its domain

• Manage to group plaintexts of public datasets properly

2. Arithmetic 

3. Efficient

• Requires log degree number of computations
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IDEA2: Dust Sampling Method

• Shift only sampled points (dusts) rather 
than all points
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IDEA2: Dust Sampling Method

• Shift only sampled points (dusts) rather 
than all points

– O #dusts ⋅ #points < O(#points2)

– Cannot label all points only by mean-shift 
process on sampled dusts

– But, can seek modes of KDE

• Label each point by its closest mode

– O(#dusts ⋅ #points)
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IDEA2: Dust Sampling Method

Original Mean-shift Dust Sampling Method

Mean-shift All points Only sampled points

Structure

Find the modes and label 

the points at the same 

time

Find the modes first, 

and label the points later

Computational

Complexity
O(#points2)

𝐎(#𝐝𝐮𝐬𝐭𝐬 ⋅ #𝐩𝐨𝐢𝐧𝐭𝐬)
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Our Modified Scheme

1. Sample dusts from given 
data

2. Apply mean-shift to dusts 
and find modes

– Use HE friendly kernel

3. Label each points to its 
closest mode

15



Experimental Result

Num of 

Data

Num of 

Attributes

Num of

Clusters

Comp.

Time

Quality Evaluation

Accuracy Silh Coeff

Hepta 212 3 7 25 min 212/212
0.702

(0.702)

Tetra 400 3 4 36 min 400/400
0.504

(0.504)

Two

Diamonds
800 2 2 38 min 792/800

0.478

(0.485)

Large

Scale
262,144 4 4 82 min

262127

/262144

0.781

(0.781)

※ Use multi-threading (8 threads)
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• High accuracy on public datasets

– Covers various features of dataset: shape of data, number of 

data, number of attributes, and number of clusters

• Fast and accurate performance on large scale dataset



Experimental Result

JA18 Our work

Comp. Time 25.79 days 83 min

HE library TFHE HEAAN

• 400 times faster than the previous work 

(JA18) on Lsun public dataset

[JA18] Jäschke, A. and Armknecht, F., 2018, August. Unsupervised machine learning

on encrypted data. In International Conference on Selected Areas in

Cryptography (pp. 453-478). Springer, Cham.

※ Use a single thread
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Q&A

Thank you!
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